 SOFTWARE TESTING

1. Basic concepts

2. Black Box Testing Techniques

3. White Box Testing Techniques

4. Integration and Higher-Level Testing.

Human- vs Machine-Based Testing

Human-based testing (Static V&V)

Desk Checking, Walkthroughs, Reviews/Inspections

Applicable to requirements/specifications, design, code, test plans/designs/cases, etc.

Can be extremely effective...

Machine-Based Testing (Dynamic V&V)

Execution of (‘‘crafted’’) test cases

Actual and expected outputs (i.e., program behaviors) are compared.

Definitions of ‘‘TESTING’’

IEEE: The process of exercising or evaluating a system or system component by manual or automated means to verify that it satisfies specified require-ments or to identify differences between expected and actual results.

Myers: The process of executing a program with the intent of finding errors..

Evolving Attitudes About Testing

1950’s

· Machine languages used

· Testing is debugging

1960’s

· Compilers developed

· Testing is separate from debugging

1970’s

· Software engineering concepts introduced

· Testing begins to evolve as a technical discipline

1980’s

· CASE tools developed

· Testing grows to V&V

1990’s

· Increased focus on shorter development cycles

· Quality focus increases

· Testing skills and knowledge in greater demand

· Increased acceptance of testing as a discipline.

Fisherman’s Dilemma

You have 3 days for fishing and 2 lakes to choose from. Day 1 at lake X nets 8 fish. Day 2 at lake Y nets 32 fish.Which lake do you return to for day 3?Does your answer depend on any assumptions?.

Di Lemma

In general, the probability of the existence of more errors in a section of a program is directly related to the number of errors already found in that section..

Invalid and Unexpected Inputs

Test cases must be written for INVALID and UNEX-PECTED, as well as valid and expected, input conditions. In many systems, MOST of the code is concerned with input error checking and handling..

Who Should Test Your Program?

· Most people are inclined to defend what they produce, not find fault with it.

· Thus, programmers should avoid testing their own pro-grams.

· But what if this is not possible?

Become Mr.Hyde....

Anatomy of a Test Case

What are the parts of a test case?

1. a description of input condition(s)

2. a description of expected results

Where do ‘‘expected results’’ come from?.

The ECONOMICS of Testing

· Testing involves a trade-off between COST and RISK.

· Is the level of acceptable risk the same for all programs?

· When is it not cost effective to continue testing?

· Under what circumstances could testing guarantee that a program is correct?.

Exhaustive Testing is Exhausting

Situation:

A module has 2 input parameters.Word Size is 32 bits.

Testing is completely automated: 100 nanoseconds are required for each test case.

Question:

How long would it take to execute this module exhaus-tively, i.e., covering every possible combination of input values?

Short Answer: too long...

Long Answer:

64 -9

2 X100 X 10

-------------------------- = 3600 X 24 X 365

Bottom Line: testing cannot, in general, guarantee the absence of errors in programs..

Testing Techniques

Black-Box: Testing based solely on analysis of require-ments (specification, user documentation, etc.). Also know as functional testing.

White-Box: Testing based on analysis of internal logic (design, code, etc.). (But expected results still come from requirements.) Also known as structural testing.

Levels or Phases of Testing

Unit: testing at the lowest level of functionality (e.g., module, function, procedure,

operation,method, etc.)

Component: testing a collection of units that make up a component (e.g., program, object, package, task, etc.)

Product: testing a collection of components that make up a product (e.g., subsystem, application, etc.)

System: testing a collection of products that make up adeliverable system.

Other Types of Testing

Integration: testing which takes place as sub-elements are combined (i.e., integrated)to

Form higher-level elements.

Regression: testing to detect problems caused by the adverse effects of program change

Acceptance: formal testing conducted to enable the cus-tomer to determine whether or

not to accept the system (acceptance criteria may be defined in a contract)

Alpha: actual end-user testing performed within the development environment

 Beta: end-user testing performed within the user environment prior to general release System Test Acceptance:testing conducted to ensure that a system is‘‘ready’’ for the system-level test phase.

Waterfall Model of the Testing Process

1. Test Planning

2. Test Design

3. Test Implementation

4. Test Execution

5. Execution Analysis

6. Result Documentation

7. Final Reporting.

What doe$ Te$ting Co$t?

About 50% of the total life-cycle effort is spent on testing.

About 50% of the total life-cycle time is spent on testing..

Costs of Errors Over the Life Cycle

The sooner an error can be found and corrected, the lower the cost.

Costs can increase exponentially with time between injec-tion and discovery.

An industry survey showed that it is 75 times more expen-sive to correct errors is covered during ‘‘installation’’ than during ‘‘analysis’’.

One organization reported an average cost of $91 per defect found during ‘‘inspections’’ versus $25,000 per defect found after product delivery..

Testing as a Profession

Software testing has become a profession—a career choice. The testing process has evolved considerably,and is now a discipline requiring trained professionals.

To be successful today,a SE organization must be ade-quately staffed with skilled testing professionals who get proper support from management.

Testing requires knowledge, disciplined creativity,and ingenuity.

Vehicles for Process Improvement

1. Post-Test Analysis: reviewing the results of a testing activity with the intent to improve its effectiveness.

2. Causal Analysis: identifying the causes of errors and approaches to eliminate future occurrences.

3. Benchmarking: general practice of recording and com-paring indices of performance, quality,cost, etc., to help identify ‘‘best practices’’ for improving product quality and process efficiency.

Black Box Testing Techniques

Equivalence Partitioning

Cause-Effect Analysis

Boundary Value Analysis

Intuition and Experience.

Definition of Black-Box Testing

Testing based solely on analysis of requirements (specifica-tion, user documentation, etc.).

Also know asfunctional testing.

Black-box testing concerns techniques for designing tests; it is not a level of testing.

Black-box testing techniques apply to all levels of testing

(e.g., unit, component, product, and system)..

Equivalence Partitioning

Idea is to partition the input space into a number of equiva-lence classes such that one could expect, based on the spec-ification, that every element of a given class would be ‘‘handled’’ (i.e., mapped to an output) in the same manner (either correctly or incorrectly).

Two types of classes are identified: valid (corresponding to inputs deemed valid from the specification) and invalid (corresponding to inputs deemed erroneous from the speci-fication)Technique is also known as input space partitioning.
Equivalence Partitioning Example

Program Specification:

An ordered pair of numbers, (x,y), are input and a mes-sage is output stating whether they are in ascending order,descending order,or equal. If the input is other than an ordered pair or numbers, an error message is output.

Equivalence Classes:

{(x,y) | x<y} (V)

{(x,y) | x>y} (V)

{(x,y) | x=y} (V)

{other than an ordered pair of numbers} (I).

Dealing with Complex Multiple-Input Situations

Note that in the previous example, the PAIR of inputs were considered as a unit, yielding partitions for a SINGLE (two-dimensional) input space.

To reduce complexity,equivalence classes are often identi-fied for INDIVIDUAL inputs, or even INDIVIDUAL ATTRIBUTES of individual inputs, yielding multiple sets of disjoint input space partitions.In cases such as this, a strategy for identifying appropriate COMBINATIONS of equivalence classes must be employed.

Such strategies will be considered in the context of CAUSE-EFFECT ANALYSIS.

Another Equivalence Partitioning Example

Identify (multiple sets of disjoint) equivalence classes for the following program specification fragment. City Tax Specification:

The first input is a yes/no response to the question ‘‘Do you reside within the city?’’ The second input is gross pay for the year in question.

A non-resident will pay 1% of the gross pay in city tax.

Residents pay on the following scale:

· If gross pay is no more than $30,000, the tax is 1%.

· If gross pay is more than $30,000, but no more than $50,000, the tax is 5%.

· If gross pay is more than $50,000, the tax is 15%.

Do your results suggest any ‘‘incompleteness’’ problems with the specification?.

Cause-Effect Analysis

Cause-Effect Analysis is a systematic means for generating test cases to cover different combinations of input ‘‘Causes’’ resulting in output ‘‘Effects.’’

A CAUSE may be thought of as a distinct input condition, or an ‘‘equivalence class’’ of input conditions. An EFFECT may be thought of as a distinct output condi-tion, or a meaningful change in program state.

Causes and Effects are represented as boolean variables and the logical relationships among them CAN (but need not) be represented as one or more boolean graphs.

C-E Analysis Process Steps

(1) Identify Causes and Effects

· The most critical and usually the most difficult step

· Choose an appropriate level of abstraction.

· Divide and conquer as necessary.

· Effects may or may not be mutually exclusive.

(2) Deduce Logical Relationships & Constraints

· Relationships take the form of conditionals and uti-lize the logical operators AND, OR, and NOT.

· Constraints describe relationships among Causes or Effects that allow for the identification of impossible combinations.

· Boolean graphs provide a convenient and economi-cal way to visualize Cause-Effect relationships.

(3) Identify an appropriate Test Case Selection Strategy

· Determines the number and nature of Cause-combi-nations to be considered for each Effect.

· Strategies can be designed to meet a variety of cov-erage requirements/cost constraints..-28 - (4)
Construct a Test Case Coverage Matrix

· Involves tracing through the Cause-Effect relation-ships to identify combinations of Causes resulting in each Effect according to the selection strategy cho-sen.

· This can be extremely tedious.

Illustration of Step 1

(Identify Causes and Effects)

For old-times’ sake, consider...

City Tax Specification:

The first input is a yes/no response to the question ‘‘Do you reside within the city?’’ The second input is gross pay for the year in question.

A non-resident will pay 1% of the gross pay in city tax.

Residents pay on the following scale:

· If gross pay is no more than $30,000, the tax is 1%.

· If gross pay is more than $30,000, but no more than $50,000, the tax is 5%.

· If gross pay is more than $50,000, the tax is 15%.Myers’ guidelines for identifying Causes and Effects:

· Underline words or phrases in the specification that cor-respond to input/output conditions or changes in state

· List each Cause and Effect.

Assign a unique number to each (use different number ranges to differentiate Causes from Effects)..-30 - Ignoring, again, the unspecified ‘‘invalid’’ input behaviors, we have:

Causes: Effects:

(1) Non-Resident (11) 1% tax

(2) Resident (12) 5% tax

(3) $0 Gross Pay $30K (13) 15% tax

(4) $30K <Gross Pay $50K

(5) Gross Pay >$50K.-31 -

Illustration of Step 2

(Deduce Logical Relationships & Constraints)

Conditionals deducible from specification:

((1) V [(2) & (3)]) => (11)

[(2) & (4)] => (12)

[(2) & (5)] => (13)

Constraints deducible from specification, problem domain knowledge, etc.:

[(1) & ¬(2)] V [¬(1) & (2)] (I.e., one, and only one, of (1) and (2) must be true.)

[(3) & ¬(4) & ¬(5)] V [¬(3) & (4) & ¬(5)] V [¬(3) & ¬(4) & (5)]

[(11) & ¬(12) & ¬(13)] V [¬(11) & (12) & ¬(13)] V [¬(11) & ¬(12) & (13)]

Boolean Graph:

(1)

(11)

(3)

(A)

(2)

(12)

(4)

(13)

(5).-32 -

Illustration of Step 3

(Identify an appropriate Test Case Selection Strategy)

Results can range from ‘‘All Feasible Combinations of Causes’’ (AFCC) to ‘‘All Effects covered with the Mini-mum number of test Cases (AEMC).’’

Most strategies are specified operationally in terms appro-priate to the representation of Cause-Effect relationships. For the relationships depicted in the graph above,how many test cases would be required to achieve AFCC cover-age? AEMC coverage?

A relatively conservative strategy with results generally intermediate to those of AFCC and AEMC is illustrated below.

Illustration of Step 4

(Construct a Test Case Coverage Matrix)

REPEAT

Select the next Effect

Tracing back through the graph (right to left), find all feasible combinations of connected (i.e., reachable) Causes that will result in the selected Effect being True. For each combination of connected Causes found for the selected Effect:

(1) determine the Truth values of all other Effects (not-ing any indeterminate values due to ‘‘don’t care’’ Cause values), and (2) enter the Truth values of each Cause and Effect in a new column of the test case coverage matrix.

UNTIL each Effect has been selected.

Applying the strategy to our model yields...

Combinations for Effect 11: 1 V A

1, A -> 1, 3, 2 (infeas)

1,˜A -> 1,˜3, 2 (infeas)

1, 3,˜2 (TC 1)

1,˜3,˜2 (TC 2)

˜1, A -> ˜1, 3, 2 (TC 3)

Combinations for Effect 12: 2 & 4 -> 2, 4 (TC 4)

Combinations for Effect 13: 2 & 5 -> 2, 5 (TC 5)

Test Case Coverage Matrix:

TEST CASES

CAUSES 1 2 3 4 5

Non-Resident (1) T T FF F

Resident (2) F FT T T

$0 Gross Pay $30K (3) T F T F F

$30K < Gross Pay $50K (4) F *FT F

Gross Pay > $50K (5) F *FF T

EFFECTS

1% tax (11) T T T F F

5% tax (12) F F FT F

15% tax (13) F F F FT

*either,but not both.

Boundary Value Analysis

A technique based on identifying, and generating test cases to explore boundary conditions.

Boundary conditions are an extremely rich source of errors. Natural language based specifications of boundaries are often ambiguous, as in ‘‘for input values of X between 0 and 40,...’’

May be applied to both input and output conditions.Also applicable to white box testing.

Guidelines for Identifying Boundary Values

‘‘Range’’ guideline: K will range in value from 0.0 to 4.0.Identify values at the endpoints of the range and just beyond.

Boundary values: 0.0- e,0.0, 4.0, 4.0+ e ‘‘Number of values’’ guideline:

The file will contain 1-25 records.Identify the minimum, the maximum, and values just

below the minimum and above the maximum.Boundary values: empty file, file with 1, 25,

and 26 records.

Boundary Value Analysis Example

Identify appropriate boundary values for the following pro-gram specification fragment.

City Tax Specification:

The first input is a yes/no response to the question ‘‘Do you reside within the city?’’ The second input is gross pay for the year in question.

A non-resident will pay 1% of the gross pay in city tax.

Residents pay on the following scale:

· If gross pay is no more than $30,000, the tax is 1%.

· If gross pay is more than $30,000, but no more than $50,000, the tax is 5%.

· If gross pay is more than $50,000, the tax is 15%..

Intuition and Experience

Also known as Error Guessing,Ad Hoc Testing,Artistic Testing, etc.

Testers utilize intuition and experience to identify potential errors and design test cases to reveal them.

Guidelines:

Design tests for reasonable but incorrect assumptions that may have been made by developers.

Design tests to detect errors in handling special situa-tions or cases.

Design tests to explore unexpected or unusual program use or environmental scenarios.

Examples of conditions to explore:

(1) Repeated instances or occurrences

(2) Repeated instances or occurrences

(3) Bl anks or null char acters in strings (eT c.)

(-4) Negative numbers

(#) Non-numeric values in numeric fields or (vic3 versa)

(6789) Inputs that are too long or two short.

Intuition and Experience Example

Using intuition and experience, identify tests you would

want to design for a subroutine that is to input and sort a list of strings based on a user-specified field..

White-Box Testing Techniques

Logic Coverage

Path Conditions

Other White-Box Testing Strategies.

Definition of White-Box Testing

Testing based on analysis of internal logic (design, code, etc.). (But expected results still come from requirements.) Also know asstructural testing.

White-box testing concerns techniques for designing tests; it is not a level of testing.

White-box testing techniques apply primarily to lower levels of testing (e.g., unit and component)..

Types of Logic Coverage

Statement: each statement executed at least once Branch: each branch traversed (and every entry point taken) at least once Condition: each condition True at least once and False at least once Branch/Condition: both Branch and Condition coverage achieved Compound Condition: all feasible combinations of condi-tion values at every branch statement covered (and every entry point taken)

Path: all feasible program paths traversed at least once.

Statement Coverage

input(Y)

if (Y<=0) then

Y :=-Y

end_if

while (Y>0) do

input(X)

Y :=Y-1

end_while

Statement Coverage requires that each statement will have been executed at least once.

Simplest form of logic coverage.

What is the minimum number of test cases required to achieve statement coverage for the program segment given above?.

Branch Coverage

input(Y)

if (Y<=0) then

Y :=-Y

end_if

while (Y>0) do

input(X)

Y :=Y-1

end_while

Branch Coverage requires that each branch will have been traversed, and that every entry point will have been taken, at least once.

What is the relationship between Statement and Branch Coverage?.

Condition Coverage

input(X,Y)

if (Y<=0) or (X=0) then

Y :=-Y

end_if

while (Y>0) and (not EOF) do

input(X)

Y :=Y-1

end_while

Condition Coverage requires that each condition will have been True at least once and False at least once. A branch predicate may have more than one condition.

What is the relationship between Branch and ConditionCoverage?

Branch/Condition Coverage

Branch/Condition Coverage requires that both Branch AND Condition Coverage will have been achieved.But what if the compiler generates code that masks the evaluation of conditions?e.g., if (Y<0) OR (X=0) THEN..

Compound Condition Coverage

input(X,Y)

if (Y<=0) or (X=0) then

Y :=-Y

end_if

while (Y>0) and (not EOF) do

input(X)

Y :=Y-1

end_while

Compound Condition Coverage requires that all feasible combinations of condition values at every branch statement will have been covered, and that every entry point will have been taken, at least once.Subsumes Branch/Condition Coverage, regardless of the order in which conditions are evaluated.

Also know asMultiple Condition Coverage.

In general, how many different combinations of condition values must be considered when a branch predicate has N conditions?.

Path Coverage

for i = 1 to 30 do

input(X,Y)

if (Y<=0) then

if (X <=0) then

Y :=-X

else

Y :=-Y

end_if_else

else

Y :=X+Y

end_if_else

end_for_do

Path Coverage requires that all feasible (complete) program paths will have been traversed at least once.

Generally considered the ‘‘strongest’’ form of logic cover-age. (What is the relationship between Path and Compound Condition Coverage?)

Path Coverage is usually impossible when loops are pre-sent. (How many test cases would be required to test all paths in the example?)

Various strategies have been developed for identifying useful subsets of paths for testing when Path Coverage is impractical: Loop Coverage, Basis Paths Coverage, and

Dataflow Coverage.-

Summary of Logic Coverage Relationships

Compound Path

Condition

Branch/

Condition

Condition Branch

Statement.

Path Conditions

With a little luck, at least some white-box coverage goals will have been met by executing test cases designed using black-box strategies. (How would you know if this were the case or not?)

Designing additional test cases for this purpose involves identifying inputs that will cause given program paths to be executed. This can be difficult.

To cause a path to be executed requires that the test case

satisfy the path condition.

For a given path, the PATH CONDITION is the conjunc-tion of branch predicates that are required to hold for all the branches along the path to be taken.. Consider an example...

(1)
input(A,B)

if (A>0) then

(2)
Z := A

else

(3)
Z := 0 end_if_else if (B>0) then

(4)
Z := Z+B

end_if

(5)
output(Z)

What is the path condition for path <1,2,5>?

What test case inputs would satisfy this condition?.-52 - Consider another example...

(1)
input(A,B)

if (A>B) then

(2)
B := B*B end_if if (B<0) then

(3)
Z := A

else

(4)
Z := B

end_if_else

(5)
output(Z)

What is the path condition for path <1,2,3,5>? What test case inputs would satisfy this condition?.

 Conclusions:

1.
To be useful, path conditions should be expressed in terms that reflect relevant state changes along the path. (Symbolic Evaluation allows for the systematic tracking of state changes for this purpose.)

2.
A path is INFEASIBLE if its path condition reduces toFALSE.

Program Instrumentation

Allows for the measurement of logic coverage during pro-gram execution.

Code is inserted into a program to record the cumulative execution of statements, branches, du-paths, etc.Execution takes longer and program timing may be altered..

Other White-Box Testing Strategies

Boundary Value Analysis

Fault-Based Testing.

Boundary Value Analysis

(1)
if (X>Y) then A

(2)
else B

end_if_else

Applies to both control and data structures.

Strategies are analogous to black-box boundary value anal-

ysis..-57 -

Fault-Based Testing

Suppose a test case set reveals NO program errors—should you celebrate or mourn the vent?

Answer: it depends on whether you’re the developer or the tester...

Non-partisan answer: it depends on the error-revealing capability of your test set.

Mutation Analysis attempts to measure test case set suffi-ciency.

Procedure:

Generate a large number of ‘‘mutant’’ programs by replicating the original program except for one small change (e.g., change the ‘‘+’’ in line 17 to a ‘‘-’’, change the ‘‘<’’ in line 132 to a ‘‘<=’’, etc.).

Compile and run each mutant program against the test set.

Compare the ratio of mutants ‘‘killed’’ (i.e., revealed) by the test set to the number of ‘‘sur-vivors’’. The higher the ‘‘kill ratio’’ the better...

What are some of the potential drawbacks of this approach?.

Integration and Higher-Level Testing

Context

Integration Testing

Higher-Level Testing Issues.

Context

Higher-level testing begins with the integration of (already unit-tested) modules to form higher-level program entities (e.g., components).

The objective of integration testing is to discover interface errors among the elements being integrated.

Once the elements have been successfully integrated (i.e.,once they are able to function together), the functional and non-functional characteristics of the higher-level element

can be tested thoroughly (via component, product, or system testing).

Integration Testing

Integration testing is carried out when integrating (i.e., combining):

· Units or modules to form a component

· Components to form a product

· Products to form a system

The strategy employed can significantly affect the time and effort required to yield a working, higher-level unit.

Note that ‘‘integration testing’’ is sometimes defined as the level of testing between unit and system. We use a more general model of the testing process.

Integration Testing Strategies

The first (and usually the easiest...) issue to address is the choice between instantaneous and incremental integration testing.

The former is sometimes referred to as the big bang approach. (Guess why!) Locating subtle errors can be very difficult after the bang.

The latter results in some additional overhead, but can sig-nificantly reduce error localization and correction time. (What is the overhead?)

The optimum incremental approach is inherently dependent on the individual project and the pros and cons of the vari-ous alternatives.

Incremental Integration Approaches

· Top-Down

Start with the ‘‘root’’ and one or more called modules.Use stubs to take the place of missing called modules.No drivers are required.

· Bottom-up

Start with leaf modules and a driver. Add one or more sibling modules, replacing drivers with modules only when all modules they call have been integrated. No stubs are required.

· Risk Driven

Start by integrating the most critical or complex mod-ules together with modules they call or are called by.

· Schedule Driven

To the extent possible, integrate modules as they become available.

· Function or Thread Driven

Integrate the modules associated with a key function(thread); continue the process by selecting another function, etc

How about Object-Oriented Systems?

Suppose a collection of cooperating objects are to be inte-grated to form a system or sub-system. Will the control structure necessarily be hierarchical?

Which of the incremental integration strategies identified above appear to be applicable? Which do not?.

Higher-Level Testing Issues

Reliability ,Recovery,Multitasking,Device and Configuration,Security,Compatibility,Stress,

Performance,Serviceability,Installability,Usability.

Typically,issues such as these become increasingly impor-tant as testing progresses toward

the system level.In addition, higher-level tests focus on the core functionality specified for

each level.

Installability Test

Focus is on functional and non-functional requirements related to the installation of the product/system. Areas to be covered include:

· Media correctness and fidelity

· Relevant documentation (including examples)

· Installation processes and supporting system func-tions.

Stress Test

Focus is on system behavior at or near conditions that over-load resources (i.e., ‘‘pushing the system to failure’’). Often undertaken in conjunction with performance testing, but emphasis is on testing near specified load and volume boundaries.

In general, products should exhibit ‘‘graceful’’ failures and non-abrupt performance degradation..

Reliability Test

Requirements may be expressed in terms of

1.
the probability of no failure in a specified time inter-val, or

2.
the expected mean time to failure.

Appropriate interpretations for failure and time are critical and vary considerably according to application. Statistical testing based on an operational profile is nor-mally employed. (Stratified random samples are drawn from the input domain.)

Statistical testing may not be practical when reliability requirements are high. Means for addressing this problem are under investigation at UF,Purdue, and elsewhere. Reliability growth models are sometimes employed to pre-dict the expected reliability at some point in the future, or the time required to achieve a given reliability.(See, for example, John Musa’s books on this subject.)

From sw_testing.pdf

Testing done by programmers can often be too subjective, and can have

emotional attachments to their own code.

{ XE "test teams:independent" }Testing done by testers independent of the

developer of the code often take a fresh view of the code.

Developers quite often carry incorrect design assumptions across into the

testing.
The most logical viewpoint is that testing is to find defects.

“Testing is the process of executing a program with the intent of finding errors”

Glen Myers

Many have proposed that testing is to demonstrate the system is correct.

“Testing can only prove the presence of bugs, never their absence”

E. W. Dijkstra

Testing is the process of discovering errors in a software system. Testing success is

finding an error, the more critical the more successful we are. Not finding an error is

theoretically a failed test case.
