Engineering Seminars


Magnetic Amplifiers


            A magnetic amplifier is a device which controls the power delivered from an a.c. source by employing a controllable non linear reactive elements or circuit generally interposed in series with the load. The power required to control the reactive element or circuit is made for less than the amount of power controlled; and hence power amplification is achieved. The non-linear reactive element is a saturable reactor. When used in a combination with a set of high-grade rectifiers, it exhibits power amplification properties in the sense that small changes in control power result in considerable changes in output power. The basic component of a magnetic amplifier, as mentioned above, is the saturable reactor. It consists of a laminated core of some magnetic material. The hysteresis loop of the reactor core is a narrow and steep one. A schematic diagram of a simple saturable core reactor with control winding and a.c. winding wound on two limbs. The control winding having a number of turns, Na.c. is fed with d.c. supply. By varying the control current, it is possible to largely vary the degree of saturation of the core. The other winding, called the a.c. winding or gate winding having a number of turns, Na.c. is fed from an a.c. source, the load being connected in series with it. The property of the reactor which makes it behave as a power amplifier is its ability to change the degree of saturation of the core when the control winding mmf (magneto motive force i.e., ampere turns), established by d.c. excitation, is changed. The a.c. power supply will have high impedance if the core is unsaturated and the varying values of lower impedances as the core is increasingly saturated. When the core is completely saturated, the impedance of the a.c. winding becomes negligibly small and the full a.c. voltage appears across the load. Small values of current through the control winding, which has a large number of turns, will determine the degree of saturation of the core and hence change the impedance of the output circuit and control the flow of current through the load. By making the ratio of control winding turns to the a.c. winding turns large, an extremely high value of output current can be controlled by a very small amount of control current, The saturable core reactor circuit shown in Fig. has certain serious disadvantages. The core gets partially desaturated in the half-cycle in which the a.c. winding mmf opposes the control winding mmf. This difficulty is overcome by employing a rectifier in the output circuit as shown in Fig. Here the desaturating (damagnetising) effect by the half-cycle of the output current is blocked by the rectifier. On the other hand, the output and control winding mmfs aid each other to effect saturation in the half-cycle in which current passes through the load, thus making the reactor a self-saturating magnetic amplifier. Another difficulty that is experienced is that a high voltage is induced in the control winding due to transformer action. In order that this voltage is unable to send current to the d.c. circuit a high inductance should be connected in series with the control winding. This, however, slows down the response of the control system and hence the overall system. The saturable core is generally made of a saturable ferromagnetic material. For magnetic amplifiers of lower ratings usual transformer type construction using silicon steel (3 to 3.5 per cent Si) is used. Use of high quality nickel-iron alloy materials, however , makes possible much higher performance amplifiers of smaller size and weight. In order to realize the advantages of these materials, use is made of toroidal core configuration.

The magnetic amplifier (colloquially known as the "mag amp") is an electromagnetic device for amplifying electrical signals. The magnetic amplifier was invented early in the 20th century, and was used as an alternative to vacuum tube amplifiers where robustness and high current capacity were required. World War II Germany perfected this type of amplifier, and it was used for instance in the V-2 rocket. The magnetic amplifier has now been largely superseded by the transistor-based amplifier, except in a few safety critical, high reliability or extremely demanding applications.

Contents

[hide]

[edit] Principle of operation

Visually a mag amp device may resemble a transformer but the operating principle is quite different from a transformer - essentially the mag amp is a saturable reactor. It makes use of magnetic saturation of the core, a non-linear property of a certain class of transformer cores. For controlled saturation characteristics the magnetic amplifier employs core materials that have been designed to have a specific B-H curve shape that is highly rectangular, in contrast to the slowly tapering B-H curve of softly saturating core materials that are often used in normal transformers.

The typical magnetic amplifier consists of two physically separate but similar transformer magnetic cores, each of which has two windings - a control winding and an AC winding. A small DC current from a low impedance source is fed into the series-connected control windings. An AC voltage is fed into one AC winding, with the other AC winding connected to the load. The AC windings may be connected either in series or in parallel, the configurations resulting in different types of mag amps. The amount of control current fed into the control winding sets the point in the AC winding waveform at which either core will saturate. In saturation, the AC winding on the saturated core will go from a high impedance state ("off") into a very low impedance state ("on") - that is, the control current controls at which voltage the mag amp switches "on".

A relatively small DC current on the control winding is able to control or switch large AC currents on the AC windings. This results in current amplification.

[edit] Applications

Magnetic amplifiers were used extensively as the switching element in early switched-mode (SMPS) power supplies[1], as well as in lighting control. They have been largely superseded by semiconductor based solid-state switches, though recently there has been some regained interest in using mag amps in compact and reliable switching power supplies. PC ATX power supplies often use mag amps for secondary side voltage regulation.

Magnetic amplifiers are still used in some arc welders.

Magnetic amplifier transformer cores designed specifically for switch mode power supplies are currently manufactured by several large electromagnetics companies, including Metglas and Mag-Inc.

Magnetic amplifiers can be used for measuring high DC-voltages without direct connection to the high voltage and are therefore still used in the HVDC-technique.

Another small book on the subject of Magnetic amplifiers by the US Navy (1951)[2]

[edit] Misnomer uses

Late in the 20th century, Robert Carver designed and produced several high quality high powered audio amplifiers, calling them magnetic amplifiers. In fact, they were in most respects conventional audio amplifier designs with an unusual power supply circuit. They were not magnetic amplfiers in the sense of this article.

Magnetic Amplifier Control

Make a Free Website with Yola.